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Abstract

We say a string of symbols s is minimal for a language L if s is a member of L, and
it is not possible to obtain another member of L by striking out one or more symbols
from s. Although the set M(L) of minimal strings is necessarily finite, determining it
explicitly for a given L can be a difficult computational problem. We use some number-
theoretic heuristics to compute M(L), where L is the language of base-b representations
of the prime numbers, for 2 ≤ b ≤ 30.
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1 Introduction

Problems about the digits of prime numbers have a long history, and many of them are
still unsolved. For example, are there infinitely many primes, all of whose base-10 dig-
its are 1? Currently, there are only five such “repunits” known [20], corresponding to
(10p − 1)/9 for p ∈ {2, 19, 23, 317, 1031}. It seems likely that four more are given by
p ∈ {49081, 86453, 109297, 270343}, but this has not yet been rigorously proven.

Another problem on the digits of primes was introduced by the third author [19]. To
describe it, we need some definitions. We say that a string x is a subword of a string y,
and we write x / y, if one can strike out zero or more symbols of y to get x. For example,
string is a subword of Meistersinger. (In the literature, this concept is sometimes called
a “scattered subword” or “substring” or “subsequence”.) A language is a set of strings. A
string s is minimal for L if (a) s ∈ L and (b) if x ∈ L and x / s, then x = s. The set of all
minimal strings of L is denoted M(L).

In this paper, we describe a heuristic technique for determining M(Lb) in the case where
Lb consists of the representations, in base b, of the the prime numbers {2, 3, 5, . . . }. We
obtain a complete characterization of M(Lb) for bases 2 ≤ b ≤ 16 and b = 18, 20, 22, 23, 24,
and 30. For the remaining bases b = 17, 19, 21, and 25 ≤ b ≤ 29, we obtain results that allow
us to “almost” completely characterize this set.

The same technique can also be applied to find minimal sets for subsets of prime numbers.
For example, we were able to determine the minimal set for primes of the form 4n + 1
represented in base 10 (and similarly for those of the form 4n + 3). This successfully
completes the sequences A111055 and A111056 in the Encyclopedia of Integer Sequences [15],
which had been incomplete since their introduction to the Encyclopedia in 2005.

Finally, we also show that determining the minimal set for the composite numbers
represented in base b is a significantly easier problem, and explicitly compute the minimal set
for all 2 ≤ b ≤ 30.

1.1 Notation

In what follows, if x is a string of symbols over the alphabet Σb := {0, 1, . . . , b− 1} we let [x]b
denote the evaluation of x in base b (starting with the most significant digit), and [ε]b := 0
where ε is the empty string. This is extended to languages as follows: [L]b := { [x]b : x ∈ L }.
We use the convention that A := 10, B := 11, and so forth, to conveniently represent strings
of symbols in base b > 10. We let (x)b be the canonical representation of x in base-b, that
is, the representation without leading zeroes. Finally, as usual, for a language L we let

Ln :=

n︷ ︸︸ ︷
LL · · ·L and L∗ :=

⋃
i≥0 L

i.
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2 Why minimal sets are interesting

One reason why the minimal set M(L) of a language L is interesting is because it allows us
to compute two natural and related languages, defined as follows:

sub(L) := {x ∈ Σ∗ : there exists y ∈ L such that x / y };
sup(L) := {x ∈ Σ∗ : there exists y ∈ L such that y / x }.

An amazing fact is that sub(L) and sup(L) are always regular. This follows from the
following classical theorem due to Higman [10] and Haines [9].

Theorem 1. For every language L, there are only finitely many minimal strings.

Indeed, we have sup(L) = sup(M(L)) and Σ∗ − sub(L) = sup(M(Σ∗ − sub(L))), and the
superword language of a finite language is regular, since

sup
(
{w1, . . . , wn}

)
=

n⋃
i=1

Σ∗wi,1Σ∗ · · ·Σ∗wi,|wi|Σ
∗

where wi = wi,1 · · ·wi,|wi| with wi,j ∈ Σ.

3 Why the problem is hard

Determining M(L) for arbitrary L is in general unsolvable, and can be difficult even when L
is relatively simple [7, 8].

The following is a “semi-algorithm” that is guaranteed to produce M(L), but it is not so
easy to implement:

(1) M := ∅
(2) while (L 6= ∅) do

(3) choose x, a shortest string in L
(4) M := M ∪ {x}
(5) L := L− sup({x})

In practice, for arbitrary L, we cannot feasibly carry out step (5). Instead, we work with
L′, some regular overapproximation to L, until we can show L′ = ∅ (which implies L = ∅). In
practice, L′ is usually chosen to be a finite union of sets of the form L1L

∗
2L3, where each of

L1, L2, L3 is finite. In the case we consider in this paper, we then have to determine whether
such a language contains a prime or not.

However, it is not even known if the following simpler decision problem is recursively
solvable:

Problem 2. Given strings x, y, z, and a base b, does there exist a prime number whose

base-b expansion is of the form x

n︷ ︸︸ ︷
yy · · · y z for some n ≥ 0?
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An algorithm to solve this problem, for example, would allow us to decide if there are any
additional Fermat primes (of the form 22n + 1) other than the known ones (corresponding to
n = 0, 1, 2, 3, 4). To see this, take b := 2, x := 1, y := 0, and z := 0161. Since if 2n + 1 is
prime then n must be a power of two, a prime of the form [xy∗z]b must be a new Fermat
prime.

Therefore, in practice, we are forced to try to rule out prime representations based on
heuristics such as modular techniques and factorizations. This is discussed in the next section.

4 Some useful lemmas

It will be necessary for our algorithm to determine if families of the form [xL∗z]b contain a
prime or not. We use two different heuristic strategies to show that such families contain no
primes.

In the first strategy, we mimic the well-known technique of “covering congruences” [3], by
finding some finite set S of integers N > 1 such that every number in a given family is divisible
by some element of S. In the second strategy, we attempt to find a difference-of-squares or
difference-of-cubes factorization.

4.1 The first strategy

We start with the simplest version of the idea: to find an N > 1 that divides each element of
the family [xL∗z]b. At first glance, this would require checking that N divides xLnz for n = 0,
1, 2, . . . . However, the following lemma shows that it is only necessary to check the two cases
n = 0 and 1. Although divisibility based on digital considerations has a long history (e.g., [5,
Chap. XII]), we could not find these kinds of results in the literature.

Lemma 3. Let x, z ∈ Σ∗b , and let L ⊆ Σ∗b . Then N divides all numbers of the form [xL∗z]b
if and only if N divides [xz]b and all numbers of the form [xLz]b.

Proof. Let y = y1 · · · yn ∈ L∗, where y1, . . . , yn ∈ L. By telescoping we have

[xyz]b − [xz]b =
n∑

i=1

([xyiyi+1 · · · ynz]b − [xyi+1 · · · ynz]b).

Cancelling the final |yi+1 · · · ynz| base-b digits in the summand difference — which are identical
— this becomes

[xyz]b = [xz]b +
n∑

i=1

b|yi+1···ynz|([xyi]b − [x]b).

But b|z|([xyi]b − [x]b) = [xyiz]b − [xz]b by adding and subtracting [z]b, so we have

[xyz]b = [xz]b +
n∑

i=1

b|yi+1···yn|([xyiz]b − [xz]b).
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Since N | [xz]b and N | [xyiz]b for each 1 ≤ i ≤ n, it follows that N | [xyz]b.
The other direction is clear, since [xz]b and numbers of the form [xLz]b are both of the

form [xL∗z]b.

In practice, our algorithm employs this lemma with L := {y1, . . . , yn} ⊆ Σb, and all
numbers of the form [xL∗z]b are shown to be composite with the following corollary.

Corollary 4. If 1 < gcd([xz]b, [xy1z]b, . . . , [xynz]b) < [xz]b then all numbers of the form
[x{y1, . . . , yn}∗z]b are composite.

Proof. By Lemma 3, we know that N := gcd([xz]b, [xy1z]b, . . . , [xynz]b) > 1 divides all
numbers of the form [x{y1, . . . , yn}∗z]b. By the size condition N is strictly less than each
such number, and so is a nontrivial divisor.

Example 5. Since gcd(49, 469) = 7, every number with base-10 representation of the form
46∗9 is divisible by 7. Since 1 < 7 < 49, each such number is composite.

We also generalize this to the following corollary in the case where a single divisor does
not divide each number in the family.

Corollary 6. Let L := {y1, y2, . . . , yn}. If

N0 := gcd
(
{[xz]b} ∪ [xL2z]b

)
and

N1 := gcd
(
[xLz]b ∪ [xL3z]b

)
lie strictly between 1 and [xz]b, then all numbers of the form [xL∗z]b are composite.

Proof. By Lemma 3 applied to [x(L2)∗z]b, we know that N0 divides all numbers of the form
[xL∗z]b in which an even number of yi appear. By Lemma 3 on [xyi(L

2)∗z]b for each 1 ≤ i ≤ n,
we know that N1 divides all numbers of the form [xL∗z]b for which an odd number of yi
appear. By the size conditions, N0 and N1 are nontrivial divisors.

Example 7. Since gcd([6]9, [611]9) = 2, every number with base-9 representation of the form
61∗ of odd length is divisible by 2. Since gcd([61]9, [6111]9) = 5, every number with base-9
representation of the form 61∗ of even length is divisible by 5. Since these numbers lie strictly
between 1 and 6, every number with base-9 representation of the form 61∗ is composite.

We also note that it is simple to generalize Corollary 6 to apply to check if there are
divisors N0, N1, . . . , Nk−1 such that Ni divides all numbers of the form [x{y1, . . . , yn}∗z]b in
which the number of yi appearing is congruent to i mod k.

Example 8. Let b := 16. Then 7 divides [8A01]b and [8A0AAA1]b. Furthermore, 13 divides
[8A0A1]b and [8A0AAAA1]b, and 3 divides [8A0AA1]b and [8A0AAAAA1]b. Thus all numbers with
base-16 representation of the form 8A0A∗1 are divisible by either 7, 13, or 3, depending on
their length mod 3.
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A version of Lemma 3 which applies to the most general kind of family we need to consider
(x1L

∗
1 · · · xmL∗m, where we allow the case L∗m = ∅) is formulated in Lemma 9.

Lemma 9. Let x1, . . . , xm ∈ Σ∗b , and L1, . . . , Lm ⊆ Σ∗b . Then N divides all numbers of
the form [x1L

∗
1x2L

∗
2 · · ·xmL∗m]b if and only if N divides [x1 · · ·xm]b and all numbers of the

form [x1L1x2x3 · · · xm]b, . . . , [x1 · · ·xm−1xmLm]b.

Proof. Say w ∈ x1L
∗
1x2L

∗
2 · · · xmL∗m; then there exist yi,1, . . . , yi,ni

∈ Li such that

w = x1y1,1 · · · y1,n1x2y2,1 · · · y2,n2 · · ·xmym,1 · · · ym,nm

for 1 ≤ i ≤ m. As in the proof of Lemma 3, we have that

[w]b = [x1 · · ·xm]b +
m∑
i=1

ni∑
j=1

b|yi,j+1···ym,nm |([x1 · · ·xiyi,jxi+1 · · ·xm]b − [x1 · · ·xm]b)

from which the claim follows.

As in Lemma 3, we typically apply this lemma in the case where each Li ⊆ Σb and show
that all numbers of the form [x1L

∗
1x2L

∗
2 · · ·xmL∗m]b have a divisor.

Example 10. Take (L1, L2, L3) := ({0}, {0}, ∅) and (x1, x2, x3) := (9, 8, 1). Since 9 divides
981, 9081, and 9801, it follows that 9 divides every number with base-10 representation of
the form 90∗80∗1.

More generally, if a single divisor doesn’t work for every number, Lemma 9 can also
be applied in the case where all numbers of the form [x1L

∗
1 · · ·xi(L2

i )
∗ · · ·xmL∗m]b have one

divisor, and all numbers of the form [x1L
∗
1 · · ·xiLi(L

2
i )
∗ · · ·xmL∗m]b have another divisor.

Example 11. Let b := 11. Since 3 divides each of [44A1]b, [44A111]b, [440A1]b , it follows
that every number of the form [440∗(11)∗1]b is composite. Since 2 divides each of [44A11]b,
[44A1111]b, [440A11]b, we know every number of the form [440∗(11)∗11]b is composite. It
follows that all numbers of the form [440∗A1∗1]b are composite.

Lemma 9 can also be applied to the case when all even-length strings under consideration
have one divisor, and all the odd-length strings have another divisor. One such case is,
for example, if numbers of the form [x1(L

2
1)
∗x2(L

2
2)
∗x3]b and [x1L1(L

2
1)
∗x2L2(L

2
2)
∗x3]b have

one divisor, and numbers of the form [x1L1(L2
1)∗x2(L2

2)∗x3]b and [x1(L2
1)∗x2L2(L2

2)∗x3]b have
another divisor.

Example 12. Let b := 9. Since 2 divides each of [6]b, [116]b, [611]b, [161]b, [11161]b, [16111]b,
every odd-length string of the form 1∗61∗ is composite. Since 5 divides each of [16]b, [1116]b,
[1611]b, [61]b, [1161]b, [6111]b, every even-length string of the form 1∗61∗ is composite.
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4.2 The second strategy

A second way of proving that families of the form xL∗z do not contain a prime is via algebraic
factorizations, such as a difference-of-squares factorization.

Lemma 13. Let x, z ∈ Σ∗b , y ∈ Σb, and let g := gcd([y]b, b− 1), X := ([y]b + (b− 1)[x]b)/g,

and Y := (b|z|[y]b−(b−1)[z]b)/g. If b, X, and Y are all squares and
√
b|z|X−

√
Y > (b−1)/g,

then all numbers of the form [xy∗z]b are composite.

Proof. Evaluating the base-b expansion of xynz, we get

[xynz]b = b|z|+n[x]b + b|z|
bn − 1

b− 1
[y]b + [z]b

=
b|z|+nX − Y

(b− 1)/g
.

Since b, X, and Y are all squares the numerator factors as a difference of squares. By the
size condition both factors are strictly larger than the denominator, and so the factorization
is nontrivial.

Example 14. Let b := 16, x := 4, y := 4, and z := 1. Then g = 1, X = 82, Y = 72, and

[44n1]b =
(4n+1 · 8 + 7)(4n+1 · 8− 7)

15
.

Since 4 · 8− 7 > 15, this factorization is nontrivial and no number of the form [44∗1]b is prime.

It is also possible to combine Lemma 9 with Corollary 6 to construct a test which also
applies to bases which are not squares.

Corollary 15. Using the same setup as in Lemma 9, if b|z|X and Y are squares,
√
b|z|X −√

Y > (b− 1)/g, and 1 < gcd([xyz]b, [xy
3z]b) < [xz]b, then all numbers of the form [xy∗z]b

are composite.

Proof. Say n = 2m is even. Then from the factorization in Lemma 9,

[xynz]b =
(bm
√
b|z|X +

√
Y )(bm

√
b|z|X −

√
Y )

(b− 1)/g

which is nontrivial by the size condition.
Alternatively, if n is odd then as in Corollary 6 we have that gcd([xyz]b, [xy

3z]b) divides
[xynz]b, and by the size condition this divisor is nontrivial.

Example 16. Let b := 17, x := 19, y := 9, and z := 9. Then g = 1, b|z|X = 852, Y = 32, and

[xy2nz]b =
(17n · 85 + 3)(17n · 85− 3)

16
.

Since 85 − 3 > 16 this factorization is nontrivial. Furthermore, all numbers of the form
[xy2n+1z]b are even, so all numbers of the form [199∗9]b are composite.
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Finally, we present a variant of Lemma 13 which applies to a difference-of-cubes factoriza-
tion.

Lemma 17. Let x, z ∈ Σ∗b , y ∈ Σb, and let g := gcd([y]b, b− 1), X := ([y]b + (b− 1)[x]b)/g,

and Y := (b|z|[y]b− (b−1)[z]b)/g. If b, X, and Y are all cubes and
3
√
b|z|X− 3

√
Y > (b−1)/g,

then all numbers of the form [xy∗z]b are composite.

Proof. As in Lemma 13, we have

[xynz]b =

(
(b|z|+nX)1/3 − Y 1/3

)(
(b|z|+nX)2/3 + (b|z|+nXY )1/3 + Y 2/3

)
(b− 1)/g

.

The second factor is at least as large as the first (except in the single case b|z|+nX = 1 and
Y = −1, which is not possible by construction of X and Y ), so by the size condition both
factors are strictly larger than the denominator, and the factorization is nontrivial.

Example 18. Let b := 8, x := 1, y := 0, and z := 1. Then g = 7, X = 1, Y = −1, and

[10n1]b = (2n+1 + 1)(4n+1 − 2n+1 + 1).

Since 2− (−1) > 1, this factorization is nontrivial and no number of the form [10∗1]b is prime.

5 Our heuristic algorithm

As previously mentioned, in practice to compute M(Lb) one works with an underapproxi-
mation M of M(Lb) and an overapproximation L of Lb − sup(M). One then refines such
approximations until L = ∅ from which it follows that M = M(Lb).

For the initial approximation, note that every minimal prime in base b with at least 4
digits is of the form xY ∗z, where x ∈ Σb − {0}, z ∈ Σb, and

Y := Σb − { y : (p)b / xyz for some prime p }.

Making use of this, our algorithm sets M to be the set of base-b representations of the
minimal primes with at most 3 digits (which can be found simply by brute force) and L to
be
⋃

x,z xY
∗z, as described above.

All remaining minimal primes are members of L, so to find them we explore the families
in L. During this process, each family will be decomposed into possibly multiple other
families. For example, a simple way of exploring the family xY ∗z where Y := {y1, . . . , yn} is
to decompose it into the families xY ∗y1z, . . . , xY ∗ynz. If the smallest member (say xyiz) of
any such family happens to be prime, it can be added to M and the family xY ∗yiz removed
from consideration. Furthermore, once M has been updated it may be possible to simplify
some families in L. In this case, xY ∗yjz (for j 6= i) can be simplified to x(Y −{yi})∗yjz since
no minimal prime contains xyiz as a proper subword.

Another way of decomposing the family xY ∗z is possible if one knows that a digit of Y
can only occur a certain number of times. For example, if xyiyiz has a proper prime subword
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then the digit yi can occur at most once in any minimal prime of the form xY ∗z, and we can
split xY ∗z into the two families

x(Y − {yi})∗z and x(Y − {yi})∗yi(Y − {yi})∗z.

Lastly, the family xY ∗z can be decomposed by considering digits of Y which are mutually
incompatible, i.e., they cannot occur simultaneously in a minimal prime. For example, if
xyiyjz and xyjyiz (i 6= j) both have proper prime subwords then the digits yi and yj cannot
occur simultaneously in any minimal prime of the form xY ∗z, and we can split xY ∗z into the
two families

x(Y − {yi})∗z and x(Y − {yj})∗z.

Sometimes it is not possible to show two digits are mutually incompatible, but it is possible
to know that one digit must appear before the other. For example, if xyiyjz has a proper
prime subword then the digit yj must appear before yi in any minimal prime of the form
xY ∗z, and we can replace xY ∗z with the family

x(Y − {yi})∗(Y − {yj})∗z.

Similarly, if xyjyyiz has a proper prime subword then we can split xY ∗yY ∗z into the two
families

x(Y − {yi})∗yY ∗z and xY ∗y(Y − {yj})∗z.

We now formulate these arguments for the most general kind of family we need to consider,
namely x1L

∗
1 · · ·xmL∗m. For simplicity, we only specify the decompositions as applying to

L1 := {y1, . . . , yn}, but it is straightforward to generalize these decompositions to also apply
to Li for any 1 ≤ i ≤ m.

Lemma 19. Every minimal prime of the form x1L
∗
1 · · · xmL∗m must also be of the form

x1x2L
∗
2 · · ·xmL∗m or x1yiL

∗
1x2L

∗
2 · · ·xmL∗m for some 1 ≤ i ≤ n.

Proof. Follows from the fact that L∗1 = {ε} ∪
⋃n

i=1 yiL
∗
1.

Similarly, one can generalize Lemma 19 to apply to adding characters to the right of L1

rather than to the left.

Example 20. The family 10{0, 1}∗61∗1 splits into the three families 1061∗1, 10{0, 1}∗061∗1,
and 10{0, 1}∗161∗1 by exploring {0, 1}∗ on the right.

Lemma 21. If x1y
k
i x2 · · ·xm contains a prime proper subword (for some k ≥ 1) then every

minimal prime of the form x1L
∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(yi(L1 − {yi})∗)jx2L
∗
2 · · ·xmL∗m

for some 0 ≤ j < k.

9



Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains k or

more instances of yi then by assumption it follows that w contains a proper prime subword,
and therefore is not a minimal prime. So if w is a minimal prime then y must contain less
than k instances of yi, i.e., y must be of the form (L1 − {yi})∗(yi(L1 − {yi})∗)j for some
0 ≤ j < k, from which the claim follows.

Example 22. The string 661 represents a prime in base 9, and is a proper subword
of 10661. It follows that the family 10{0, 1, 6}∗1 splits into the families 10{0, 1}∗1 and
10{0, 1}∗6{0, 1}∗1 in base 9.

Lemma 21 is especially useful when it can be applied with k = 1, since in that case the
family x1L

∗
1 · · · xmL∗m is replaced by a single strictly simpler family, in contrast to the other

lemmas we will describe.

Lemma 23. If x1yiyjx2 · · ·xm and x1yjyix2 · · ·xm contain prime proper subwords (where
i 6= j) then every minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m or x1(L1 − {yj})∗x2L

∗
2 · · ·xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

both yi and yj then by assumption it follows that w contains a proper prime subword, and
therefore is not a minimal prime. So if w is a minimal prime then y cannot contain yi and yj
simultaneously, i.e., y must be of the form (L− {yi})∗ or (L− {yj})∗, from which the claim
follows.

Example 24. The string 4611 represents a prime in base 8, and is a proper subword of
446411 and 444611. It follows that the family 44{4, 6}∗11 splits into the families 444∗11

and 446∗11 in base 8.

Lemma 25. If x1yiyjx2 · · ·xm contains a prime proper subword (where i 6= j) then every
minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(L1 − {yj})∗x2L
∗
2 · · · xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains yi

before yj then by assumption it follows that w contains a proper prime subword, and therefore
is not a minimal prime. So if w is a minimal prime then y cannot contain yi before yj , i.e., y
must be of the form (L− {yi})∗(L− {yj})∗, from which the claim follows.

Example 26. The string 10 represents a prime in base 11, and is a proper subword of 90101.
It follows that the family 90{0, 1, 9}∗1 splits into the family 90{0, 9}∗{1, 9}∗1 in base 11.

Lemma 27. If x1yix2y2,jx3 · · · xm contains a prime proper subword (where y2,j ∈ L2) then
every minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m or x1L1x2(L2 − {y2,j})∗x3L

∗
3 · · ·xmL∗m.
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Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2y

′x3L
∗
3 · · · xmL∗m for some y ∈ L∗1 and y′ ∈ L∗2.

If y contains yi and y′ contains y2,j then by assumption it follows that w contains a proper
prime subword, and therefore is not a minimal prime. So if w is a minimal prime then either
y cannot contain yi or y′ cannot contain y2,j, i.e., y is of the form (L1 − {yi})∗ and y′ is of
the form L∗2, or y is of the form L∗1 and y′ is of the form (L2 − {y2,j})∗, from which the claim
follows.

Example 28. The string 60411 represents a prime in base 8, and is a proper subword
of 604101. It follows that the family 60{0, 4}∗10∗1 splits into the families 600∗10∗1 and
60{0, 4}∗11 in base 8.

We call families of the form xy∗z (where x, z ∈ Σ∗b and y ∈ Σb) simple families. Our
algorithm then proceeds as follows:

1. M := {minimal primes in base b of length ≤ 3}
L :=

⋃
x,z∈Σb

xY ∗z, where x 6= 0 and Y is the set of digits y such that xyz has no
subword in M

2. While L contains non-simple families:

(a) Explore each family of L by applying Lemma 19, and update L.

(b) Examine each family of L:

i. Let w be the shortest string in the family. If w has a subword in M , then
remove the family from L. If w represents a prime, then add w to M and
remove the family from L.

ii. If possible, simplify the family by applying Lemma 21 with k = 1.

iii. Using the techniques of Section 4, check if the family can be proven to only
contain composites, and if so then remove the family from L.

(c) Apply Lemmas 21, 23, 25, and 27 to the families of L as much as possible and
update L; after each split examine the new families as in (b).

The process of exploring/examining/splitting a family can be concisely expressed in a
tree of decompositions. A sample tree of decompositions, for the family 1{0, 1, 6}∗1 in base 9,
is displayed in Figure 1. When applying Lemma 19 on a family with only one nonempty Li

we don’t show the first decomposition (simply removing L∗i ) since that results in the shortest
word in the family, which is always implicitly checked for primality/minimal subwords at
each step anyway.

5.1 Implementation

An implementation of the above algorithm was written in C using the GMP library [6] by
the first author [2]. Independently, the second author [4] wrote an implementation in C++
using the MIRACL library [18] using the same ideas and derived the same results (with a
less extensive search for primes in the simple families, but with results for bases b ≤ 50).
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Note that when exploring the families in line (a), one should not always apply Lemma 19
directly as stated by adding characters to the left of L1; in our implementation we alternate
between adding characters to the left and right of L1+k mod m, where k is the number of times
we have previously passed through line (a). Also, the application of Lemma 25 tended to
initially produce an excess number of cases, so it was useful to only apply it following a
certain number of iterations (6 in our implementation). It also led to duplicate families after
simplifying, for example families of the form xy∗yny∗z for varying n, but these could be
detected and removed.

At the conclusion of the algorithm described, L will consist of simple families (of the
form xy∗z) which have not yet yielded a prime, but for which there is no obvious reason
why there can’t be a prime of such a form. In such a case, the only way to proceed is to
test the primality of larger and larger numbers of such form and hope a prime is eventually
discovered.

The numbers in simple families are of the form (abn + c)/d for some fixed a, b, c, d where
d | abn + c for all n. Except in the special case c = ±1 and d = 1, when n is large the known
primality tests for such a number are too inefficient to run. In this case one must resort to a
probable primality test such as a Miller–Rabin test, unless a divisor of the number can be
found. Since we are testing many numbers in an exponential sequence, it is possible to use a
sieving process to find divisors rather than using trial division.

To do this, we made use of Geoffrey Reynolds’ srsieve software [17]. This program uses
the baby-step giant-step algorithm to find all primes p which divide abn + c where p and n
lie in a specified range. Since this program cannot handle the general case (abn + c)/d when
d > 1 we only used it to sieve the sequence abn + c for primes p - d, and initialized the list
of candidates to not include n for which there is some prime p | d for which p | (abn + c)/d.
The program had to be modified slightly to remove a check which would prevent it from
running in the case when a, b, and c were all odd (since then 2 | abn + c, but 2 may not divide
(abn + c)/d).

Once the numbers with small divisors had been removed, it remained to test the remaining
numbers using a probable primality test. For this we used the software LLR by Jean Penné [16].
Although undocumented, it is possible to run this program on numbers of the form (abn+c)/d
when d 6= 1, so this program required no modifications. A script was also written which
allowed one to run srsieve while LLR was testing the remaining candidates, so that when a
divisor was found by srsieve on a number which had not yet been tested by LLR it would
be removed from the list of candidates.

In the cases where the elements of M(Lb) could be proven prime rigorously, we employed
PRIMO by Marcel Martin [13], an elliptic curve primality proving implementation.

12



1{0, 1, 6}∗1

10{0, 1, 6}∗1

10{0, 1}∗1

10{0, 1}∗01

100∗01

divisible by 2

100∗10∗01

subword 1011

10{0, 1}∗11

prime 1011

10{0, 1}∗6{0, 1}∗1

10{0, 1}∗61∗1

10{0, 1}∗061∗1

100∗061

divisible by 8

10{0, 1}∗161∗1

subword 1011

1061∗1

1061

not prime

11{0, 1, 6}∗1

11{0, 1, 6}∗1

11{0, 1}∗1

11{0, 1}∗01

prime 1101

11{0, 1}∗11

111∗11

difference of squares

11{0, 1}∗6{0, 1}∗1

11{0, 1}∗06{0, 1}∗1

subword 1101

11{0, 1}∗16{0, 1}∗1

111∗161∗1

divisible by 2 or 5

116{0, 1}∗1

1161∗1

divisible by 2 or 5

16{0, 1, 6}∗1

161∗1

divisible by 2 or 5

Figure 1: Tree of decompositions for 1{0, 1, 6}∗1 in base 9.
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6 Results

A summary of the results of our algorithm is presented in Figure 2; it was able to completely
solve all bases up to 30 except for 17, 19, 21, and those between 25 and 29. The results in
base 29 required some additional strategies, as described in Section 7.

For every solved base, we give the size |M(Lb)| and the “width” maxx∈M(Lb) |x| of the
corresponding family. For the unsolved bases, we give a lower bound on the size and width of
M(Lb), along with the number of families of the form xy∗z for which no prime member could
be found, nor could the family be ruled out as only containing composites. Since such simple
families can contain at most one minimal prime, an upper bound on |M(Lb)| is given by the
sum of the lower bound for |M(Lb)| and the number of unsolved families. Additionally, we
give the height to which the simple families were searched for primes; if there are any more
primes in M(Lb) they must have at least this many digits in base b.

The family 80∗1 in base 23, corresponding to the generalized Proth numbers 8 ·23n+1, was
already known to be prime for minimal n = 119215 in the process of solving the generalized
Sierpiński conjecture in base 23 [1].

The largest probable prime we found was the number 9E800873 (expressed as a base 23
string) or (106 · 23800873 − 7)/11 in standard notation. It contains 1090573 decimal digits and
at the time of discovery was the tenth largest known probable prime according to Henri and
Renaud Lifchitz’s ranking [12].

6.1 Unsolved families

There were 38 families for which we were unable to determine if they contain a prime or
not. They are explicitly described in Figure 3 in both their “base b” string representation
xy∗z and “algebraic” form (abn + c)/d = [xynz]b. The numbers a and c are given in their
factorized form so as to help spot algebraic factorizations.

6.2 Primes of the form 4n + 1 and 4n + 3

The heuristic algorithm described in Section 5 may also be easily modified to apply to
recursive subsets of prime numbers, e.g., those congruent to 1 mod 4 (alternatively, 3 mod 4).
The modifications necessary are to the initialization of M in line 1, and to update the check
“w represents a minimal prime” to also check that w is in the subset under consideration.
When searching for minimal primes of the form 4n+ 1, it was necessary to remove families
only containing numbers of the form 4n + 3, and vice versa. A modified Lemma 3 can be
used to check this, e.g., [x(L0 ∪ L)z]b are all congruent to c mod d implies that [xL∗z]b are
all congruent to c mod d.

The lemmas of Section 4 can be used without modification, since a family which contains
only composites of course does not contain any primes of a special form, either. For simplicity
the lemmas of Section 5 are stated to apply when the minimal set consists of primes, but
actually apply to general minimal sets and also need no modification.
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b |M(Lb)| max
x∈M(Lb)

|x| # unsolved
families

searched
height

2 2 2 0 −
3 3 3 0 −
4 3 2 0 −
5 8 5 0 −
6 7 5 0 −
7 9 5 0 −
8 15 9 0 −
9 12 4 0 −
10 26 8 0 −
11 152 45 0 −
12 17 8 0 −
13∗ 228 32021 0 −
14 240 86 0 −
15 100 107 0 −
16 483 3545 0 −
17∗ ≥ 1279 ≥ 111334 1 879000
18 50 33 0 −
19∗ ≥ 3462 ≥ 110986 1 625000
20 651 449 0 −
21∗ ≥ 2599 ≥ 47336 2 379000
22 1242 764 0 −
23∗ 6021 800874 0 −
24 306 100 0 −
25∗ ≥ 17597 ≥ 136967 12 254000
26 ≥ 5662 ≥ 8773 2 366000
27∗ ≥ 17210 ≥ 109006 5 306000
28∗ ≥ 5783 ≥ 94538 1 461000
29∗ ≥ 57283 ≥ 174240 14 202000
30 220 1024 0 −

∗Data based on results of probable primality tests.

Figure 2: Summary of results for the prime numbers for each base b.
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Base Family Algebraic form
17 F19∗ (5 · 821 · 17n − 32)/16
19 EE16∗ (22 · 13 · 307 · 19n − 1)/3
21 CF∗0K (3 · 17 · 21n+2 − 11 · 113)/4

G0∗FK 24 · 21n+2 + 5 · 67
25 6MF∗9 (1381 · 25n+1 − 53)/8

CM1∗ (59 · 131 · 25n − 1)/24
EE1∗ (8737 · 25n − 1)/24
E1∗E (337 · 25n+1 + 311)/24
EFO∗ 2 · 3 · 61 · 25n − 1
F1∗F1 (192 · 25n+2 + 37 · 227)/24
F0∗KO 3 · 5 · 25n+2 + 22 · 131
F0K∗O (5 · 11 · 41 · 25n+1 + 19)/6
LOL∗8 (53 · 83 · 25n+1 − 3 · 37)/8
M1∗F1 (232 · 25n+2 + 37 · 227)/24
M10∗8 19 · 29 · 25n+1 + 23

OL∗8 (199 · 25n+1 − 3 · 37)/8
26 A∗6F (2 · 26n+2 − 7 · 71)/5

I∗GL (2 · 32 · 26n+2 − 11 · 113)/25
27 80∗9A 23 · 27n+2 + 11 · 23

999G∗ (101 · 877 · 27n − 23)/13
CL∗E (32 · 37 · 27n+1 − 7 · 29)/26
EI∗F8 (191 · 27n+2 − 23 · 149)/13
F∗9FM (3 · 5 · 27n+3 − 113557)/26

28 OA∗F (2 · 7 · 47 · 28n+1 + 53)/27
29 1A∗ (19 · 29n − 5)/14

68L0∗6 7 · 757 · 29n+1 + 2 · 3
AMP∗ (8761 · 29n − 52)/28
C∗FK (3 · 29n+2 + 2 · 331)/7
F∗OPF (3 · 5 · 29n+3 + 139 · 1583)/28
FKI∗ (6379 · 29n − 32)/14
F∗OP (3 · 5 · 29n+2 + 7573)/28
LP09∗ (31 · 16607 · 29n − 32)/28
OOPS∗A 2 · 10453 · 29n+1 − 19
PC∗ (2 · 89 · 29n − 3)/7

PPPL∗O (87103 · 29n+1 + 32)/4
Q∗GL (13 · 29n+2 − 3 · 1381)/14
Q∗LO (13 · 29n+2 − 19 · 109)/14
RM∗G (389 · 29n+1 − 5 · 19)/14

Figure 3: The unsolved families listed in their “base b” and “algebraic” representations.
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When run on the primes of the form 4n+ 1 represented in base 10, our implementation
successfully computes the minimal set consisting of 146 elements, the largest of which contains
79 digits. The Encyclopedia of Integer Sequences [15] contains the elements for this minimal
set in entry A111055. Prior to our work, the longest 11 elements were missing from this
listing.

When run on the primes of the form 4n+ 3 represented in base 10, our implementation
successfully computes the minimal set consisting of 113 elements, the largest of which contains
19153 digits. Because of its size this number is not easily proven prime, but François Morain
successfully produced a primality certificate for it [14]. The second-largest number has 50
digits, so the remaining elements are easily proven prime. The Encyclopedia of Integer
Sequences [15] contains the elements for this minimal set in entry A111056. Prior to our
work, the longest 10 elements were missing from this listing.

7 Some additional strategies

The strategies discussed so far suffice to restrict the possible forms of minimal primes to a
finite number of simple families in all bases 2 ≤ b ≤ 28. However, as b increased, in addition
to the calculations becoming more costly, it was found to be necessary to use increasingly
complicated strategies. We now describe some additional strategies which we found sufficient
to solve all non-simple families in base 29.

Lemma 29. If every number of the form x1(L1− yi)∗x2L
∗
2 · · ·xmL∗m is composite, then every

minimal prime of the form x1L
∗
1 · · ·xmL∗m must also be of the form x1L

∗
1yiL

∗
1x2L

∗
2 · · · xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y does not

contain a yi then w is composite by assumption. Therefore if w is a prime then y contains
a yi, i.e., y ∈ L∗1yiL

∗
1, from which the result follows. (Note that one could improve this

result via y ∈ (L1 − yi)∗yiL∗1 ∪ L∗1yi(L1 − yi)∗, but this was found to be unnecessary for our
purposes.)

Example 30. The numbers represented by the family F{0, 9, F}∗F in base 29 are divis-
ible by 3, so every minimal prime of the form F{0, 9, F, P}∗F must also be of the form
F{0, 9, F, P}∗P{0, 9, F, P}∗F.

Lemma 31. If x1yiyjyix2 · · ·xm contains a prime proper subword (where i 6= j) then every
minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(L1 − {yj})∗(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

yiyjyi then by assumption it follows that w contains a proper prime subword, and therefore
is not a minimal prime. So if w is a minimal prime then either y does not contain a yj, or y
contains a yj and all yis in y either come before or after the yj . In each case, y is of the form
(L− {yi})∗(L− {yj})∗(L− {yi})∗, from which the claim follows.
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Example 32. The string QLQ represents a prime in base 29, and is a proper subword of
LQLQL. It follows that the family L{L, Q}∗L splits into the family LL∗Q∗L∗L in base 29.

This rule may also be generalized to apply to the case when x1yiyjyiyjx2 · · ·xm contains
a prime proper subword (where i 6= j).

Example 33. The string LL9L9LQL represents a prime in base 29. It follows that the family
LL{9, L}∗Q∗QL splits into the family LLL∗9∗L∗9∗Q∗QL in base 29.

In Section 4.1 we described a number of strategies for determining if every member of a
family has a divisor, but for some families divisors exist which will not be found using those
tests. The following lemma can help one discover when this is the case; in particular when
every member of a family is divisible by some small prime. For a language L we use the
notation [L]b mod N to denote the finite set of residues { [x]b mod N : x ∈ L }.

Lemma 34. If 1 < gcd(k,N) for every k ∈ [L]b mod N and p /∈ [L]b for every prime p
which divides N , then all numbers of the form [L]b are composite.

Proof. Let x be an arbitrary member of L. Then gcd([x]b, N) = gcd([x]b mod N,N) > 1 by
assumption, so [x]b cannot be prime unless [x]b = gcd([x]b, N). But in that case [x]b would
be a prime which divides N , and so [x]b /∈ [L]b by the second assumption, in contradiction to
x ∈ L.

To make use of this lemma, we need to be able to compute [x1L
∗
1 · · ·xmL∗m]b mod N . To

do this, we can make use of the following relations:

[Lx]b mod N = (b · ([L]b mod N) + [x]b) mod N

[L{y1, . . . , yn}]b mod N =
n⋃

i=1

[Lyi]b mod N

[L{y1, . . . , yn}∗]b mod N =
∞⋃
i=0

[L{y1, . . . , yn}i]b mod N

In the final case, the union may be taken to be finite over i < l where l is chosen such
that

⋃l
i=0[L{y1, . . . , yn}i]b mod N =

⋃l−1
i=0[L{y1, . . . , yn}i]b mod N . Using these relations, we

can compute [x1L
∗
1 · · ·xmL∗m]b mod N progressively, working left to right and starting from

[∅]b mod N = {0}. To solve base 29 it was sufficient to use N = 2 · 3 · 5.

Example 35. Let b := 29 and N := 30. Then [L1∗61∗LK∗K]b mod N = {4, 5, 6, 14, 15, 16, 25},
so if k is in this set then gcd(k,N) ∈ {2, 5, 6, 15} and gcd(k,N) > 1. Since 2, 3, 5 /∈
[L1∗61∗LK∗K]b, by Lemma 34 all numbers of the form L1∗61∗LK∗K are composite.
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8 Composite numbers

One can also consider the companion problem of determining the minimal elements for the
composite numbers {4, 6, 8, 9, 10, 12, . . .}. Here, in contrast with the primes, we have

Theorem 36. The following decision problem is recursively solvable: given a base b and
a DFA M accepting a language L of strings in a base-b canonical representation, does M
accept the base-b representation of a composite number?

This follows immediately from

Theorem 37. Suppose L is a regular language, accepted by a deterministic finite automaton
M of n states. Then if M accepts a composite number expressed in base b, it must accept
one whose base-b representation has at most n(b2n + 1) digits.

Proof. If L is finite, then the longest string accepted by M has at most n − 1 digits, and
n− 1 < n(b2n + 1).

Otherwise L is infinite. Then M accepts a string of length ` with n < ` ≤ 2n that can
be pumped (as in the pumping lemma). That is, there exists x ∈ L such that x = uvw
with |uv| ≤ n. Then a classical proof of the non-regularity of the prime numbers (e.g., [11,
Example 3.2, p. 57]) shows that either x is the representation of a composite number (in
which case |x| ≤ 2n ≤ n(b2n + 1)) or uvpw is composite, where p = [x]b. Our bound now
follows.

Write Sb := { (n)b : n ≥ 4 is composite }. For our purposes, the following theorem gives a
better bound.

Theorem 38. Every minimal element of Sb is of length at most b+ 2.

Proof. Consider any word w of Sb of length ≥ b+ 3. Since there are only b distinct digits,
some digit d is repeated at least twice, so that dd / w. If d > 1, the number [dd]b is composite,
as it is divisible by [11]b but not equal to it. If d = 0, then some nonzero digit c precedes it
in w, so c00 / w and [c00]b is divisible by b2, which is composite. Finally, if no digit other
than 1 is repeated, then 1111 / w, and [1111]b = [11]b · [101]b, and hence is composite.

Theorem 38 turns the computation of the minimal elements for Sb into a finite search.
Our results are given in Figure 4.

9 Conclusion and perspectives

We have (sometimes partially) solved the problem of finding the minimal elements for the
prime numbers represented with the first bases. However, the problem rapidly becomes very
complex: the number of members increases rapidly, some bases need sophisticated strategies,
and some members are very long. Hence, to complete the cases where some (simple) families
resisted our analysis, and to go further in the bases, we need better exploration strategies,
and better primality tests for numbers expressed by a simple family in some base.
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b |M(Sb)| max
x∈M(Sb)

|x|

2 3 4
3 4 3
4 9 3
5 10 3
6 19 4
7 18 3
8 26 3
9 28 2
10 32 3
11 32 3
12 46 4
13 43 3
14 52 3
15 54 2
16 60 3
17 60 3
18 95 4
19 77 3
20 87 3
21 90 2
22 94 3
23 97 3
24 137 4
25 117 2
26 111 3
27 115 2
28 131 3
29 123 3
30 207 4

Figure 4: Summary of results for the composite numbers for each base b.
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Another problem left open is to delineate the asymptotic behaviour of the size and width of
those sets M(Lb) when b increases. A rough estimation is that the size increases exponentially,
but this increase is lower when the base has many different factors.

To illustrate once more the difficulty of computing M(L), we recall an open problem from
[19]:

Problem 39. Let L := {1, 2, 4, 8, 16, 32, 64, . . .}, the base-10 representation of the powers
of 2. Is it the case that

M(L) = {1, 2, 4, 8, 65536}?

This would follow, for example, if we could prove that every power of 16 greater than 65536
contained at least one of the digits {1, 2, 4, 8}. But this seems beyond current capabilities.
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