
Introduction to Polymorphism in
Object-Oriented Programming

University of Windsor

March 12, 2020

Live Polling: pollev.com/curtisbright681

1/37

https://pollev.com/curtisbright681


Roadmap

In this lecture we’ll design a simple object-oriented toolkit for
displaying graphics in a terminal. Along the way we will cover:

I Encapsulation
I Classes, Variables, Methods, Information hiding

I Inheritance
I Superclasses, Subclasses, Substitution principle

I Polymorphism
I Method overloading, Method overriding, Dynamic binding

2/37



Encapsulation

encapsulate (verb):
to enclose in or as if in a capsule

3/37



Encapsulation

encapsulate (verb):
to enclose in or as if in a capsule

3/37



Classes

There are different types or classes of objects. For example, “shape”,
“triangle”, “box”, and “text box” are possible classes.

Hello!

In C++, a class may be defined using the class keyword:

class Shape
{
};

4/37



Classes

There are different types or classes of objects. For example, “shape”,
“triangle”, “box”, and “text box” are possible classes.

Hello!

In C++, a class may be defined using the class keyword:

class Shape
{
};

4/37



Variables

Some properties of objects differ between two objects of the same
class. For example, the heights and widths of a shape. These are
variables of the shape.

class Shape
{

int height, width;
};

5/37



Variables

Some properties of objects differ between two objects of the same
class. For example, the heights and widths of a shape. These are
variables of the shape.

class Shape
{

int height, width;
};

5/37



Methods

Objects may also perform actions—such as updating their variables.

class Shape
{

int height, width;
// Initialize height and width
void init(int h, int w)
{

height = h;
width = w;

}
};

6/37



Methods

Objects may also perform actions—such as updating their variables.

class Shape
{

int height, width;
// Initialize height and width
void init(int h, int w)
{

height = h;
width = w;

}
};

6/37



Information hiding

By default an object’s variables and methods can only be accessed
from within the object’s methods.

Using the public keyword you can make variables and methods
accessible from outside the object.

7/37



Example

class Shape
{

int height, width;
public:

void init(int h, int w)
{

height = h;
width = w;

}
};

8/37



Consider the following Account class:

class Account
{

int balance; // Balance of account
public:

int getBalance(); // Return balance of account
void deposit(int amount); // Add to balance

}

Assuming that A is of type Account, which of the following is a
correct way of updating A?
A. balance += 5;

B. A.balance += 5;

C. deposit(5);
D. A.deposit(5);
E. A.getBalance() += 5;

9/37



Inheritance

inheritance (noun):
a physical or mental characteristic inherited from your
parents, or the process by which this happens

10/37



Inheritance

inheritance (noun):
a physical or mental characteristic inherited from your
parents, or the process by which this happens

10/37



Class hierarchy

Certain classes like shapes can be organized into a hierarchy:

Shape

Triangle Box

Text Box

11/37



Superclasses and subclasses

A more generic class is called a superclass, while a more specialized
class is called a subclass.

Shape

Triangle Box

Superclass

Subclasses

Example: Triangle and Box are subclasses of Shape.

12/37



What is the most natural relationship between the classes Account,
ChequingAccount, and SavingsAccount?

A. Account and ChequingAccount are superclasses of
SavingsAccount.

B. Account and ChequingAccount are subclasses of
SavingsAccount.

C. SavingsAccount and ChequingAccount are superclasses of
Account.

D. SavingsAccount and ChequingAccount are subclasses of
Account.

13/37



Defining subclasses

To define a new subclass of a given class, the colon operator is used:

class Triangle : public Shape
{
};

class Box : public Shape
{
};

14/37



Inheritance

The methods of a superclass are automatically inherited by any of
its subclasses.

In other words, a subclass has the variables and methods of the
superclass it was derived from—but the reverse is not true.

15/37



Inheritance

Caveat: By default, variables and methods of a superclass are not
visible to subclasses. They can be made visible (only to subclasses)
by using the protected keyword.

class Shape
{
protected:

int height, width;
public:

...
};

16/37



Inheritance

Caveat: By default, variables and methods of a superclass are not
visible to subclasses. They can be made visible (only to subclasses)
by using the protected keyword.

class Shape
{
protected:

int height, width;
public:

...
};

16/37



Substitution principle

Since a subclass is a special case of a superclass, you can always use
a subclass to stand in for a superclass if necessary.

17/37



In this class hierarchy which classes could not stand in for a Dog?

Animal

Cat

Calico

Dog

Poodle

A. Animal
B. Cat, Calico
C. Animal, Cat, Calico
D. Cat, Calico, Poodle
E. Animal, Cat, Calico, Poodle

18/37



Example

class Box : public Shape
{
public:

// Draw visual depiction of the box to the standard output
void draw()
{

for(int i=0; i<height; i++)
cout << string(width, '*') << endl;

}
};

class Triangle : public Shape
{
public:

// Draw visual depiction of the triangle to the standard output
void draw()
{

for(int i=1; i<=height; i++)
cout << string(i*width/height, '*') << endl;

}
};

19/37



Example

int main()
{

Triangle t;
t.init(5,5);
t.draw();

Box b;
b.init(10,10);
b.draw();

}

20/37



If b is a Box and s is a Shape which line has a problem?

A. Box b2 = b;

B. Shape s2 = s;

C. Box b2 = s;

D. Shape s2 = b;

21/37



Polymorphism

22/37



Polymorphism

polymorphism (noun):
the condition of occurring in several different forms

23/37



Polymorphism

polymorphism (noun):
the condition of occurring in several different forms

23/37



Method overloading

Two methods of a class can share the same name, so long as the
number of parameters or parameter types are different.

24/37



Method overloading

class Shape
{

...
void init(int h, int w)
{

height = h;
width = w;

}
void init(int hw)
{

height = hw;
width = hw;

}
}

int main()
{

Box b;
b.init(10);
b.draw();
b.init(5,5);
b.draw();

}

25/37



Method overloading

class Shape
{

...
void init(int h, int w)
{

height = h;
width = w;

}
void init(int hw)
{

height = hw;
width = hw;

}
}

int main()
{

Box b;
b.init(10);
b.draw();
b.init(5,5);
b.draw();

}

25/37



Consider the following code:

string mystery(int a) { return "A"; }
string mystery(string a) { return "B"; }
string mystery(string a, int b) { return "C"; }
string mystery(int a, string b) { return "D"; }

What does mystery(1, "A") return?

A. "A"
B. "B"
C. "C"
D. "D"

26/37



Method overriding

A subclass can override a method of a superclass.

The new method has the same name and parameters as the
overridden method but can have a different implementation.

27/37



Method overriding

class TextBox : public Box
{

string text;
public:

void setText(string s)
{

text = s;
}
void draw() // Overridden
{

for(int i=0; i<height; i++)
{ if(i==height/2)

cout << text << endl;
else

cout << string(width, '*') << endl;
}

}
};

28/37



Method overriding

class Box : public Shape
{

...
void draw()
{ ... }

};

class TextBox : public Box
{

...
void draw()
{ ... }

};

int main()
{

Box b;
b.init(5);
b.draw();
TextBox tb;
tb.init(5);
tb.setText("Hello");
tb.draw();

}

29/37



Method overriding

class Box : public Shape
{

...
void draw()
{ ... }

};

class TextBox : public Box
{

...
void draw()
{ ... }

};

int main()
{

Box b;
b.init(5);
b.draw();
TextBox tb;
tb.init(5);
tb.setText("Hello");
tb.draw();

}

29/37



Consider the following:

class Shape { int height, width; };
class Box : public Shape { void draw() { ... } };
class Triangle: public Shape { void draw() { ... } };

Method overriding is used in these simplified class definitions:
A. True
B. False

30/37



Consider the following:

class Box : public Shape
{
public:

void init(int hw) { ... }
};

class TextBox: public Shape
{
public:

void init(int hw, string s) { ... }
};

Method overriding is used in these simplified class definitions:
A. True
B. False

31/37



Dynamic binding

By default, C++ will determine which method implementation is
used at compile time based on the object’s type.

However, a more specific choice could be made at run time because
more information is known.

32/37



Dynamic binding

Declaring a method as virtual tells the compiler to use “dynamic
binding” (on the method in this class and any of its subclasses) and
make the choice at run time.

class Box : public Shape { ... virtual void draw() { ... } };
class TextBox : public Box { ... void draw() { ... } };

void DrawBox(Box& b)
{

b.draw();
}

Which draw method will be called in DrawBox?

Depends on the type of object passed to DrawBox!

with Box reference

with TextBox reference

33/37



Dynamic binding

Declaring a method as virtual tells the compiler to use “dynamic
binding” (on the method in this class and any of its subclasses) and
make the choice at run time.

class Box : public Shape { ... virtual void draw() { ... } };
class TextBox : public Box { ... void draw() { ... } };

void DrawBox(Box& b)
{

b.draw();
}

Which draw method will be called in DrawBox?

Depends on the type of object passed to DrawBox!

with Box reference

with TextBox reference

33/37



Dynamic binding

int main()
{

Box b;
b.init(5);
DrawBox(b);

}

DrawBox will call the draw
method of Box.

int main()
{

TextBox tb;
tb.init(5);
tb.setText("Hello");
DrawBox(tb);

}

DrawBox will call the draw method
of TextBox.

34/37



Consider the following:

class Shape { int height, width; }
class Box : public Shape { ... virtual void draw() { ... } };
class TextBox : public Box { ... void draw() { ... } };
void DrawBox(Box& b) { b.draw(); }
Shape s;
TextBox tb;

What will be the result of running DrawBox(s) and, separately,
DrawBox(tb)?

A. Box’s draw run in both cases.
B. Box’s draw run in first case, TextBox’s draw run in second

case.
C. TextBox’s draw run in both cases.
D. Error in first case, TextBox’s draw in second case.
E. Error in first case, Box’s draw in second case.

35/37



Consider the following:

class Shape { int height, width; }
class Box : public Shape { ... virtual void draw() { ... } };
class TextBox : public Box { ... void draw() { ... } };
void DrawShape(Shape& s) { s.draw(); }

int main()
{

Shape s;
DrawShape(s);

}

What kind of error arises in this program?

A. Compile time error
B. Run time error

36/37



Summary

We discussed three kinds of polymorphism:

1. Method overloading:
Methods/functions that have the same name but different
parameters.

2. Method overriding:
Methods that have the same name and same parameters, but
belong to a superclass and subclass.

3. Dynamic binding:
Method overriding of a function that has been declared
virtual.

37/37



Summary

We discussed three kinds of polymorphism:

1. Method overloading:
Methods/functions that have the same name but different
parameters.

2. Method overriding:
Methods that have the same name and same parameters, but
belong to a superclass and subclass.

3. Dynamic binding:
Method overriding of a function that has been declared
virtual.

37/37



Summary

We discussed three kinds of polymorphism:

1. Method overloading:
Methods/functions that have the same name but different
parameters.

2. Method overriding:
Methods that have the same name and same parameters, but
belong to a superclass and subclass.

3. Dynamic binding:
Method overriding of a function that has been declared
virtual.

37/37


